Gallatin Valley Food Bank Garden Project

INTRODUCTION

The Gallatin Valley Food Bank serves the greater Bozeman area through its main facility in town, and through the Belgrade and satellite Three Forks and Big Sky locations. In the last year alone, the food bank processed almost 2 million pounds of food, made only possible by large amounts of volunteer labor and generous donations. Most of the donations come from daily shipments of food that is past the sell by date, but is still consumable. These shipments come from several of the larger grocery stores in town such as Walmart and Safeway, and also many smaller participating locations. As such, the nature of these donations consist of primarily non-perishable food items and canned or boxed goods, and a family that relies on the food bank can have a diet lacking a healthy amount of fresh produce.

This problem is addressed by the back garden project, located directly behind the main facility building in Bozeman. As the current project yield does not fully satisfy the fresh produce needs of the food bank, I was brought on to investigate whether or not the project could be optimized in several ways, including man-hour efficiency and produce yield. My primary method of increasing efficiency was through the creation of an irrigation drip system, which would reduce the water draw of the garden. Increase water availability to the crops, and reduce the required labor for within the garden. Weather cataloging and precipitation recording were also investigated as a method of increasing efficiency. This will result in more fresh produce being directly available to the food insecure families of the greater Bozeman area, improving dietary quality across the board.

METHODS

The primary method of utilized in this study was the design, construction, and installation of a custom drip irrigation system. Measurements of the garden plot were taken, from which it was determined that six rows could be accommodated, each containing three separate drip lines and a one foot walking path between each row. Drip tube and valves were ordered online from Dripworks. PVC ½” pipe was used to build the primary frame for the irrigation system, with threaded ½” T adapters spaced to where the drip lines would branch off from. The frame was then cut into three 7” pieces and fitted with threaded adapters so it could be disassembled and reassembled at the end and beginning of growing seasons. From each T adapter, a ball valve was attached directly to the frame, with 75’ of drip tape coming off that ran the entire length of the garden. This allowed for each individual row to be opened or closed independently. The end of the frame was fitted with a hose adapter, allowing it to attach to the previous hose that came of the water pump utilizing rain water, thus not requiring a new water source.

Use of a weather and precipitation recording system was explored, however the man hour cost to maintain accurate and complete records, not to mention extrapolating meaningful data from those records, was too high for the minimal expected benefit.

RESULTS

The drip irrigation system worked exactly as it was expected to. Less water was consumed as the drip tape delivered water directly to the root of the plant as opposed to the broad spread of a garden hose attachment. Each watering was more effective for irrigation as it acted as a slow release system, allowing time for the roots to absorb the water by saturating the soil in a span of minutes instead of just seconds. There were no records of previous crop harvest so there was no way to numerically determine if this year’s harvest was increased, nor would there be an opportunity to collect sufficient data to correlate any increase in yield to the irrigation technique alone.

The number of man hours required to irrigate the garden each day was significantly reduced, requiring only the pump to be turned on and off. No training was required for any of the Gallatin Valley Food Bank staff to operated the irrigation system to its simplicity, and also due to the fact that it utilized the preexisting water pump.

CONCLUSIONS

Use of a weather and precipitation record system was not pursued for several reasons. First was the lack of data from previous seasons. This would mean that any meaningful data could not be derived until several years down the road when a database had been developed, and as this study only took place over part of one summer it would have been impossible to make it a part of this study. It would also have been very difficult to gather the required data that would have been sufficient to determine the effect of the irrigation system change on the crop yield alone, or in other words accounting for every other variable, including seasonal variables, planting times, and particular volunteer labor details. The inconsistent nature of the crops planted season to season would also have made it very difficult to conclude any meaningful results.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM103474. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.