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Gene Regulatory Networks 
Qualitative descriptions of how 
concentrations of proteins affect one another. 
1. Purpose of the model: to use 

mathematical techniques to predict long-
term behavior of concentrations of 
proteins. 

2. Questions of interest: 
a) How do concentrations behave in the 

long run? 
b) What are the steady states of the 

system? 
c) Does the final state depend on initial 

data?  What are the consequences for 
the behavior of a population of cells? 

d) How do the steady states depend on 
environmental conditions (that is, on 
values of the parameters)? 

Switching System 
A dynamical system consisting of 𝑁 ordinary 
differential equations (ODEs), each describing 
the rate of change of a chemical species.  
Switching system models can address our 
questions for networks with 7 to 10 vertices. 
A switching system can describe behavior of 
proteins or mRNA but not both, motivating 
our extensions.  Each ODE in the system has 
several key pieces: 
1. The step function σ𝑖  
2. The logic function 𝑀𝑖 
3. The composite switching function Λ𝑖 

Phase Space 
The phase space of the switching and 
extended systems.  Each point in the space 
represents a state of the system, meaning a 
particular set of concentrations for each 
species.  Each point also has an associated 
direction, which indicates the state to which 
the system tends from that initial point.  Note 
that the thresholds associated to each vertex 
partition the phase space into a finite number 
of domains called cells.  The cells each have a 
set of faces formed by the bounding portions 
of the hyperplanes on which a particular 
vertex is constantly equal to one of its 
thresholds.  To the left is a projection of the 
phase space of the example network at left. 

Parameters 
A parameter for the switching system 
associated to a particular gene regulatory 
network is a tuple 𝑙, 𝑢, θ, γ  of sets of values 
associated to each vertex and each edge. 
It consists of a choice of numerical values for 
each of the following: 
1. for each 𝑦𝑖 in the gene regulatory 

network, the associated γ𝑖. 
2. for each edge (𝑦𝑠, 𝑦𝑡) in the gene 

regulatory network, the associated 𝑙𝑡,𝑠, 

𝑢𝑡,𝑠, and θ𝑡,𝑠.  
A parameter for an extended system consists 
of the same four sets as a parameter for the 
regulatory network, plus: 
1. for each 𝑥𝑘 (𝑘 = 1,2,3, . . . , 𝑛), the 

associated 𝑎𝑘 and 𝑏𝑘. 

State Transitions 
Given a particular parameter choice, the 
flow between states in the phase space 
implies flow between neighboring cells, 
which in most cases is monodirectional 
across each face.  To the left are two two-
dimensional examples.  Note that even 
within the same system, the direction of 
flow between cells can change 
depending on parameter choice. 

Domain Graph 
We define a new directed graph on a set 
of vertices in bijection with the domains 
in the phase space.  The edges preserve 
the direction of flow between the cells 
corresponding to the vertices at the 
endpoints, or take a vertex to itself if all 
neighbors of the corresponding cell flow 
into that cell.  Note that unlike the gene 
regulatory network there is only one 
edge labeling in the domain graph.  To 
the right are domain graphs for the two 
examples above. 

Morse Graph 
Maintaining a parameter choice and the 
associated domain graph, we define a 
third directed graph.  The vertices are in 
bijection with the set of recurrent 
components of the domain graph.  A set 
𝐶 of vertices is recurrent if for each 
𝑢, 𝑣 ∈ 𝐶, there exists a path from 𝑢 to 𝑣 
in 𝐶.  An edge is inserted between two 
vertices if there exists a path in the 
domain graph between the 
corresponding recurrent components.  
The node labelings indicate the type of 
recurrent component.  A Morse graph is 
a course description of the dynamical 
behavior of the switching system at the 
corresponding parameter. 

Parameter Graph 
The parameter graph is an undirected graph, 
and it is the same for a regulatory network 
and any of its extensions.  Each vertex 
represents a set of parameters for the 
switching system that give rise to the same 
domain graph.  An edge exists between two 
vertices if the two corresponding sets of 
parameters differ by the order between two 
consecutive threshold values or the order 
between γ𝑖θ𝑗,𝑖 and Λ𝑖 for some 𝑦𝑖 and 𝑦𝑗.  To 

the right are an example regulatory network 
(called the repressilator) and the associated 
parameter graph.  The vertices are shaded 
according to the Morse graphs they generate.  
Each Morse graph consists of a single node: 
1. No shading: FP 
2. Light shading: FP ON 
3. Medium shading: FC 
4. Dark shading: FP OFF 

Extensions 
We extend the regulatory network model 
to describe both mRNA and protein 
concentrations.  We introduce a set of 
intermediaries between every pair of 
vertices that share an edge in the original 
graph.  An extension is in some ways 
more biologically accurate than a typical 
regulatory network, and it often captures 
more dynamical behavior.   

Extended System 
We modify the switching system to 
describe the concentrations of species in 
an extension.  We call this dynamical 
system an extended system.  Note the 
original vertices are governed by similar 
equations to those in the switching 
system, albeit with modified step 
functions (and thus modified switching 
functions).  The intermediaries are 
governed by linear ODEs. 

Non-isomorphic Morse Graphs 
To the left are the domain and Morse graphs 
of an extension of a simple regulatory 
network at a particular parameter node.  
Although not shown, the Morse graph of the 
original regulatory network at the same 
parameter node consists of a single node 
labeled FC, meaning this extension exhibits 
additional dynamical behavior.  There exist 
other examples of extensions whose Morse 
graphs are not only non-isomorphic to but are 
not even refinements of those of the original 
network. 

Applications 
We intend to apply our work on extensions 
first to a test-bed network known as IRMA.  
This system was synthetically constructed in a 
species of yeast.  We hope to establish that 
our modeling approach is viable for study of 
such networks in general.  We will next apply 
our work to several networks relevant to 
cancer research. 

Objective: to improve models for genetic systems.  We use ODE models to describe concentrations of 
chemical species.  Conventional models neglect actions of some species.  We introduce additional equations 
to describe those actions. 
Results: we present results proving that our modifications maintain certain properties necessary for these 
models’ usefulness and proving that our modifications exhibit behavior not displayed by conventional models. 

Methods: Using extensions of gene regulatory networks, mRNA-protein networks can be 
modeled using the same techniques as protein and mRNA networks, which allow fast 
computation and characterization of the systems’ dynamics using Morse graphs over a 
parameter graph. 


