Comparison of the Voltage Sensitive Phosphatases from Vertebrate Species
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The voltage sensing phosphatase (VSP) is a transmembrane DLBC lymphoma B ociction Dr - VSP  %FSGASLI PRV . .3
protein which regulates the phosphatidylinositol phosphate (PIP) B 500 Y ' Ty (( PIGAP, e crp vep
signaling pathway in a voltage dependent manner. VSP Is unique B Amplification _ PI(3,4,5)P. PI(4)P o
because It Is the first example of a voltage regulated enzyme and Melanoma 100 ms ~ /v N
suggests a direct link between the membrane potential and the Figure 2. Graph of ] -80 mV PLC AFT @ PLC AFL G
PIP signaling pathway. The membrane potential is an important Hs-VSP1 alterations in o e
signal in normal cellular processes controlling neuronal signaling, varying cancer studies. ou ®FIB45P,
muscle_contractlons, and Immune responses while PIPs regul_ate Green shc_)ws mutation, E .o ﬁgﬁ&ggg&g& gﬁ Pathway 1
many different processes in the cell, including membrane traffick- blue deletion, and red TAPP
Ing, promoting cell death, and cell growth'. When either pathway amplification. s 02 n egpe ﬁﬁﬁ o \
IS compromised, many serious diseases can occur, including au- “The results shown here S 04+
tism?, epilepsy?, and cancer®. Breast cancer are in whole or part C % -0.6- (3 2

The phosphatase and tensin homolog (PTEN) is a tumor sup- based upon the data 500 mV S 08 3&%&&333 ose
pressor frequently mutated in cancer*and a 3-phosphatase of generated by the TCGA o . &
phosphatidylinositol-3,4,5-trisphosphate, PI(3,4,5)P,. The catalytic Research Network: '_1'5.0 P PO S S
domain of VSP shares a 44% identity with PTEN,; however, VSP http://cancer.ge- B el -80 mV Voltage (mV) Voltags Gensor -~
functions as both a 3- and 5-phosphatase>*’. Interestingly, VSP nome.nih.gov/”
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Figure 4. Ci-VSP G211C compared to Dr-VSP G147C A) Align- CFP
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has been found to be expressed in non-small cell carcinoma and
cancer and could indicate an unexplored role of voltage in cancer A
cell propagation.
+
tunicate Ciona intestinalis (sea squirt) species of the protein : D ‘ ‘+ ggggggg
(Ci-VSP) and very little Is known about the vertebrate VSPs. | . L % %g
+
(chicken, Gg-VSP) and Danio rerio (zebrafish, Dr-VSP) in order to
compare the functions of these vertebrate species to Ci-VSP.
etry (VCF) experiments. VCF Is a technigue that changes the volt-
age of the VSP, flourescently tagged, expressed cell activating
read out. Several of the Dr-VSP mutations have expressed and
display voltage-dependent fluorescence changes that vary from
cies of VSP do not all function simiarily. The rest of the vertebrate
species are still being mutated to include labeling sites.

hepatobiliary cancers®, suggesting it may also play a role in
The majority of VSP research has focused on the
have been studying the vertebrate VSP species Gallus gallus
Dr-VSP has been successfully mutated for voltage clamp fluorom-
and causeing protein movement which changes the fluorescent
the equivalent Ci-VSP mutation suggesting that the different spe-
B

ment of Ci-VSP and Dr-VSP labeling sites. Ci-VSP G211C and
Dr-VSP G147C in blue and green respectively. B, C) Fluores-
cence change corresponding to a voltage pulse to 200mV. Repre-
sentative cells. B) CI-VSP G211C exhibits a two part decreasing Voltags Sensor
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A . movement. C) Dr-VSP G147C exhibits a three part decreasing-in-
2 > 0.9 creasing-decreasing movement. D) Overlay of fluorescence
PI(3,4,5)P, PI(4)P Q e traces. E, F) Fluorescence to Vo|tage graphs_ E) Ci-VSP G211C Fi.gure /. Cartoon ShOWing how the FRET/PH'domalnslg inter-aCt
\ 7 § -0.44 moves beginning around -20mV. n=14 F) Dr-VSP G147C moves with PIPs. Pathway 1 shows the fTAPP-PH domain binding with
C  VolageSensor D é -0.6- above OmV. n=3 All error bars are S.E.M. P1(3,4)P, then releasing when PI(3,4)P, is dephosphorylated into
G -VSP 29ETEADGLGRL2B G -VSP 358\ Al HCKGCKS367 > 0.8 NEW DIRECTION P1(4)P. Pathway 2 sh_ows the fPLC-PH d_omaln binding with |
Dr - VSP 145EGGASL | PRV5 Dr - VSP 297\/| Al HCKGGEK306 10 P (4,5)P2 then releasing when P|(4,5)P2 Is dephosphorylated into
Gy-VSP 145 AATDQVPRMIS  Gg- VSP  297] | Al HOKGGEK3 ' .-iéo 100 20 O 20 100 150 200 G - VSP 2090ETGADGL GR)_218 P[(4)P. Insert 1 shows fluorescence changes from fPH-domains
X| - VSP2 144ESGATNI PRMS3 X| - VSP 296\/] Al HCKGGEK305 Voltage (mV) Dr - VSP 145 —SGAS| | PRV154 as PIPs are dephosphorylated. Insert 2 1s a FRET diagram.
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Hs- VSP1 164 KLLRNI PRW72  Hs- VSP1  238] VAl HCKGGK?247 TMRM. TMRM structure shown at right. B) Voltage protocol and Xl - VSP?  M44FESGATNI PRMSS gether.
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