Comparison of the Voltage Sensitive Phosphatases from Vertebrate Species

ABSTRACT

The voltage sensing phosphatase (VSP) is a transmembrane protein which regulates the phosphatidylinositol phosphate (PIP) signaling pathway in a voltage dependent manner. VSP is unique because it is the first example of a voltage regulated enzyme and suggests a direct link between the membrane potential and the PIP signaling pathway. The membrane potential is an important signal in normal cellular processes controlling neuronal signaling, muscle contractions, and immune responses while PIPs regulate many different processes in the cell, including membrane trafficking, promoting cell death, and cell growth¹. When either pathway is compromised, many serious diseases can occur, including autism², epilepsy³, and cancer⁴.

The phosphatase and tensin homolog (PTEN) is a tumor suppressor frequently mutated in cancer⁴ and a 3-phosphatase of phosphatidylinositol-3,4,5-trisphosphate, PI(3,4,5)P₃. The catalytic domain of VSP shares a 44% identity with PTEN; however, VSP functions as both a 3- and 5-phosphatase^{5,6,7}. Interestingly, VSP has been found to be expressed in non-small cell carcinoma and hepatobiliary cancers⁸, suggesting it may also play a role in cancer and could indicate an unexplored role of voltage in cancer cell propagation.

The majority of VSP research has focused on the tunicate *Ciona intestinalis* (sea squirt) species of the protein (Ci-VSP) and very little is known about the vertebrate VSPs. I have been studying the vertebrate VSP species Gallus gallus (chicken, Gg-VSP) and *Danio rerio* (zebrafish, Dr-VSP) in order to compare the functions of these vertebrate species to Ci-VSP. Dr-VSP has been successfully mutated for voltage clamp fluorometry (VCF) experiments. VCF is a technique that changes the voltage of the VSP, flourescently tagged, expressed cell activating and causeing protein movement which changes the fluorescent read out. Several of the Dr-VSP mutations have expressed and display voltage-dependent fluorescence changes that vary from the equivalent Ci-VSP mutation suggesting that the different species of VSP do not all function simiarily. The rest of the vertebrate species are still being mutated to include labeling sites.

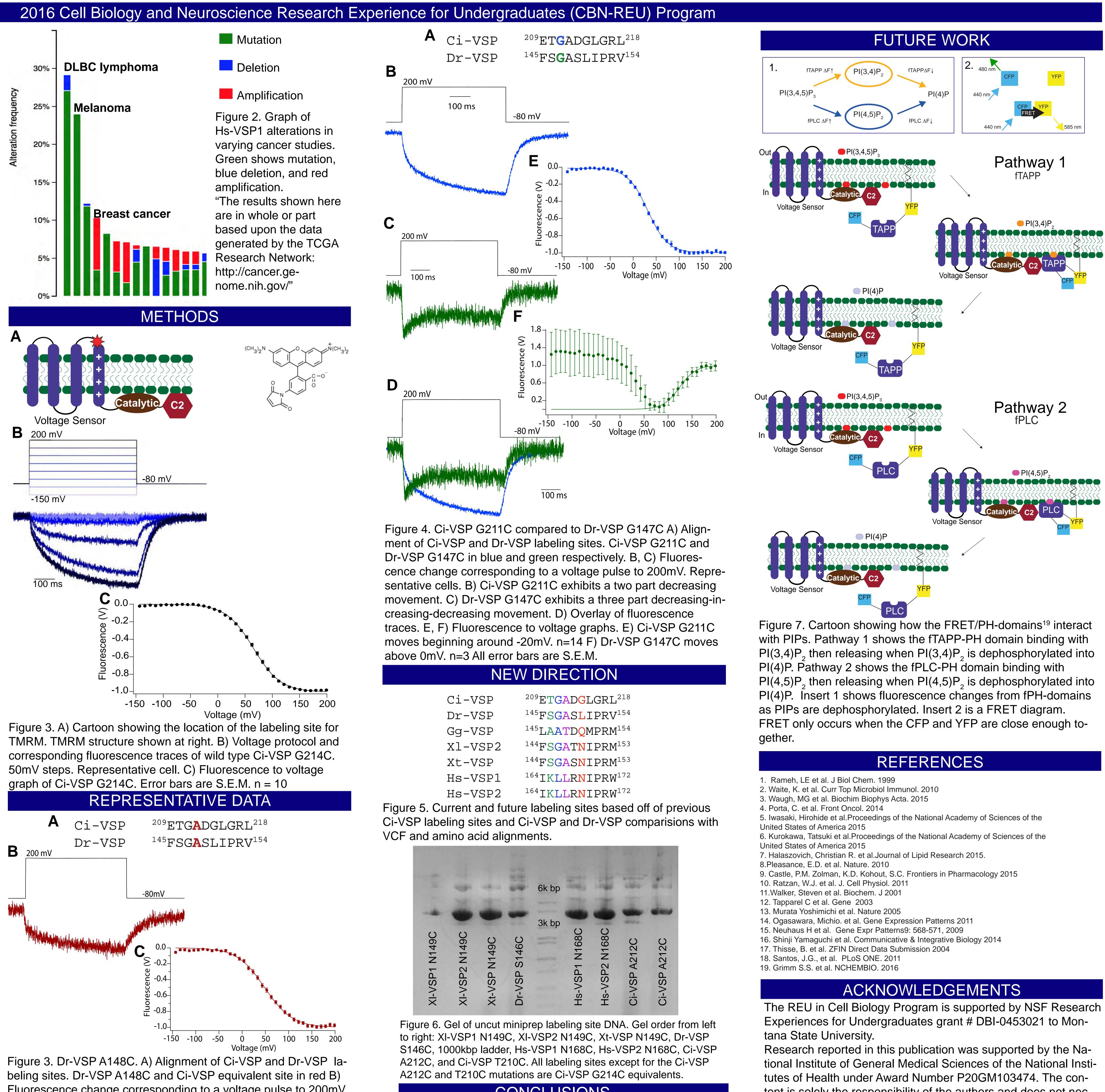

	INTROD	JCTION	
	+ + + Catalytic C2	B PI(3,4,5)P ₃	PI(3,4)P ₂ PI(4)P
C Voltage S	ale ale ale	D	
Ci-VSP	²⁰⁹ ETĜÂDĜLGRL ²¹⁸	Ci-VSP	³⁵⁸ VIAIH <mark>C</mark> KGGK ³⁶⁷
Dr-VSP	¹⁴⁵ FSGASLIPRV ¹⁵⁴	Dr-VSP	²⁹⁷ VIAIH <mark>C</mark> KGGK ³⁰⁶
Gg-VSP	¹⁴⁵ LAATDQMPRM ¹⁵⁴	Gg-VSP	²⁹⁷ IIAIH <mark>C</mark> KGGK ³⁰⁶
Xl-VSP2	¹⁴⁴ FSGATNIPRM ¹⁵³	Xl-VSP	²⁹⁶ VIAIH <mark>C</mark> KGGK ³⁰⁵
Xt-VSP	¹⁴⁴ FSGASNIPRM ¹⁵³	Xt-VSP	²⁹⁶ VIAIH <mark>C</mark> KGGK ³⁰⁵
Hs-VSP1	¹⁶⁴ IKLLRNIPRW ¹⁷²	Hs-VSP1	²³⁸ IVAIH <mark>C</mark> KGGK ²⁴⁷
Hs-VSP2	¹⁶⁴ IKLLRNIPRW ¹⁷²	Hs-VSP2	¹⁸⁴ IVAIH <mark>C</mark> KGGK ¹⁹³

Figure 1. A) Cartoon of the voltage sensing phosphatase. B) Cartoon of VSP's enzymatic activity with PIPs. VSP functions as both a 3- and a 5-phosphatase of PIPs. C) Alignment of the S3-S4 linker. Astericks indicate amino acids that have been the focus of this study. D) Alignment of the active site. The active site of VSP has a highly conserved sequence. When the highlighted cysteine is mutated in Ci-VSP all enzymatic activity is stopped.

PHYSIOLOGICAL IMPORTANCE			
Animal	Adult	Juvenile	
Human H-VSP1 & 2	brain, stomach, testes ^{10,11}	unknown	
Sea Squirt Ci-VSP	neural complex, blood, testes ^{12,13}	stomach, intestine, blood ^{12,13}	
Chicken Gg-VSP	testes ^{14,15} kidney, brain, sto		
Zebrafish Dr-VSP	ovaries, testes ^{16,17}	kidney, eye ^{16,17}	
Frog XI-VSP1&2; Xt-VSP	liver, kidneys, ovaries, testes ¹⁸	unknown	

Table 1. Comparision of the VSP expression patterns in the organs of species. VSP expression is highly variable not only between speecies but also between adult and juvenile stages of the same species.

Karen Stengel and Susy Kohout

Fluorescence change corresponding to a voltage pulse to 200mV. A148C also only shows a two part decrease. Representative cell. C) Fluorescence to voltage graph. Dr-VSP A148C moves beginning around -10mV. Error bars are S.E.M. n = 13

Department of Cell Biology and Neuroscience

August 4, 2016

Ci-VSP	²⁰⁹ ETGADGLGRL ²¹⁸
Dr-VSP	¹⁴⁵ FSGASLIPRV ¹⁵⁴
Gg-VSP	¹⁴⁵ LAATDQMPRM ¹⁵⁴
Xl-VSP2	¹⁴⁴ FSGATNIPRM ¹⁵³
Xt-VSP	¹⁴⁴ FSGASNIPRM ¹⁵³
Hs-VSP1	¹⁶⁴ IKLLRNIPRW ¹⁷²
Hs-VSP2	¹⁶⁴ IKLLRNIPRW ¹⁷²

								1
				6k bp				See
	-	-	-		-	-	-	-
SC	00	C	U	3k bp	8C	88C		()
N149C	XI-VSP2 N149C	Xt-VSP N149C	S146C		N168C	2 N168C	Ci-VSP A212C	Ci-VSP A212C
XI-VSP1	'SP2	/SP /	Dr-VSP \$		Hs-VSP1	Hs-VSP2	SP A	/SP /
∧-IX	∧-IX	Xt-V	Dr-/		Hs-	Hs-	Ci-V	Ci-V

CONCLUSIONS

Different species have different movements even at equivalent amino acids and also exhibit different voltage dependencies.

Figure
with P
PI(3,4
PI(4)P
PI(4,5
PI(4)P
as PIF
FRET
gether

 Rame Waite, Waugh Porta, Iwasah United Si Kuroka United Si Kuroka Halasza Pleasa Castle Ratza Pleasa Castle Ratza Ratza Tappa Mura Mura Ogas Neuh Shinj Thiss Santo Grimi

Health.

tent is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of

NIH R01GM111685 to Dr. Susy Kohout